Daily Archives: June 5, 2014

New research on juggling

IMG_2606

As I’m sure many of you already know, learning to juggle is associated with greater gray matter density in parts of the brain that control motion perception and hand-eye coordination. Not juggling for a long time tends to lead to the brain reverting back to “normal”(though some evidence suggests some brain changes are retained).

I’ve long wondered though if skill level when it comes to juggling is correlated with more gray matter. Earlier research has shown that even lousy jugglers have more gray matter in certain parts of the brain when compared to controls. Now more recent research shows that expert juggling is in fact correlated with higher gray matter density, compared to less skilled juggling. According to Juggling revisited – A voxel-based morphometry study with expert jugglers:

Juggling is a highly interesting tool to investigate neuroplasticity associated with motor-learning. Several brain-imaging studies have reported changes in regional brain morphology in visual association cortices in individuals learning how to juggle a three-ball cascade. However, to our knowledge there are no studies that investigated expert jugglers, looking for specific features in regional brain morphology related to this highly specialized skill. Using T1-weighted images and voxel-based morphometry we investigated in a cross-sectional study design 16 expert jugglers, able to juggle at least five balls and an age- and gender-matched group of non-jugglers. We hypothesized that expert jugglers would show higher gray matter density in regions involved in visual motion perception and eye-hand coordination. Images were pre-processed and analyzed using SPM8. Age was included in the analyses as covariate of no interest. As compared to controls jugglers displayed several clusters of higher, regional gray matter density in the occipital and parietal lobes including the secondary visual cortex, the hMT+/V5 area bilaterally and the intraparietal sulcus bilaterally. Within the jugglers group we also found a correlation between performance and regional gray matter density in the right hMT+/V5 area. Our study provides evidence that expert jugglers show increased gray matter density in brain regions involved in visual motion perception and eye-hand coordination, i.e. brain areas that have previously been shown to undergo dynamic changes in terms of gray matter increases in subjects learning a basic three-ball cascade. The extent to which transient increases in beginners and the differences in experts and non-experts are based on the same neurobiological correlates remains to be fully elucidated.

This isn’t that surprising. Similar brain changes can result from learning to play an instrument or learning to dance. Now if only they would do some research on joggling!

Upper body exercise versus lower body in terms of inflammation

IMG_1105

Like a lot of fitness fanatics, I do a lot of reading. I am always looking for new information to help me and my readers and friends improve their athletic performance and overall health. One area in particular I love exploring are the differences between upper body exercise and lower body exercise.

So I was very excited when I found this- The inflammatory response to upper and lower limb exercise and the effects of exercise training in patients with claudication.I have cited some studies that contrast upper body with lower body exercise before, but they weren’t about the amount of inflammation in response to upper body versus lower body exercise. I’ve been curious about this for some time. To make the long story short, inflammation can be a good thing at a moderate level, while chronic inflammation is associated with, and may play a role in causing many serious diseases.

Too much inflammation may also hinder exercise recovery and performance. The study I mentioned above, from theĀ University of Sheffield, U.K is of particular interest since it found that:

RESULTS:

An acute bout of sustained lower limb exercise significantly increased the intensity of CD11b and CD66b(these are markers for inflammation) expression by peripheral blood neutrophils in all groups, whereas upper limb exercise had no effect. Resting neutrophil expression of CD11b and CD66b and circulating von Willebrand factor levels were unaffected by the training program, as were the inflammatory responses to an acute bout of sustained upper and lower limb muscular work, despite the fact that both training programs significantly increased walking distances.

CONCLUSIONS:

These findings indicate that upper limb exercise training programs may offer certain advantages over currently prescribed lower limb programs. Our results show that exercising nonischemic muscles in a way that promotes improved cardiorespiratory function and walking capacity can avoid the potentially deleterious systemic inflammatory responses associated with lower limb exertion in patients with stable intermittent claudication.

(Bold is mine)

So in essence, the lesson here is that lower body exercise produces a lot of inflammation, while upper body produces none(based on the specific markers used). This makes sense in a way since lower body exercise is generally weight-bearing, compared to most upper body exercise, and the leg muscles are generally larger. This isn’t really that surprising.

So upper body cardio probably wouldn’t be as exhausting, obviously. And as far as joggling is concerned, most of the inflammation is due to the running(most of the effort/calories burned is due to the running), not the juggling, so if you are afraid that adding juggling to your running will be problematic for you, there is little reason to be concerned.

Unlike regular running, joggling helps improve posture and coordination, with little to no drawbacks.